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Our work has focused on developing new cost sensitive feature acquisition and classification
algorithms, mapping these algorithms onto camera networks, and creating a test bed of video data
and implemented vision algorithms that we can use to implement these. First, we will describe a
new algorithm that we have developed for feature acquisition in Hidden Markov Models (HMMs).
This is particularly useful for inference tasks involving video from a single camera, in which the
relationship between frames of video can be modeled as a Markov chain. We will describe this
algorithm in the context of using background subtraction results to identify portions of video that
contain a moving object. Next, we will describe new algorithms that apply to general graphical
models. These can be tested using existing test sets that are drawn from a range of domains in
addition to sensor networks.

1 Feature Acquisition within a Single Camera

We have completed a preliminary study aimed at performing cost-sensitive label acquisition for
background subtraction in a single video stream. We describe a small set of initial results that we
find encouraging.

We consider the problem of using background subtraction to determine whether there is a
moving object in a video (see Figure 1). Objects are detected by first performing background
subtraction, and then using the size of the largest connected component of foreground pixels as a
feature. Generally, this is small when noise causes scattered foreground pixels, and larger when
there is a moving object. We can integrate information temporally using a Hidden Markov Model
with two states that reflect the presence or absence of a moving object. Each state gives rise to a
different distribution for the size of the largest connected component.

In this simple setting we can examine the problem of performing label acquisition to control
the use of cheap and expensive background subtraction algorithms. For a cheap algorithm, we
simply threshold the difference between each frame and the previous one, marking pixels with large
intensity differences as foreground. As a more expensive algorithm we use a mixture of Gaussians
to model the background, and mark foreground pixels that are unlikely to be background according
to this model [7]. The question we face is whether we can run the cheap algorithm on all frames
but use the expensive algorithm sparingly, and still achieve accuracy similar to that obtained when
we run the both algorithms everywhere.

If we idealize the situation slightly, and assume that the expensive algorithm always produces
an accurate result, then [3] show that we can use dynamic programming (DP) to find the optimal lo-
cations at which to apply the expensive algorithm. Unfortunately, givenn nodes in an HMM, their
algorithm requiresO(n5) computation. This algorithm is suitable for an HMM that has few nodes,
when obtaining new measurements is very expensive, but not for a video containing thousands
of frames. However, we have experimented with snippets of video containing dozens of frames.
For these we can use the DP algorithm to select frames for expensive background subtraction,
producing results that are twice as accurate as when we simply apply expensive processing to the
same number of frames selected uniformly in the sequence. This is encouraging, but significantly
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Figure1: Our background subtraction experiments use video from outdoor scenes, as shown above.

understatesthe potential of intelligent label acquisition.
If we divide a video into short snippets, the primary potential for intelligent processing is

probably in deciding which snippets deserve a lot of extra attention and which do not. We have
therefore devised a new algorithm that applies expensive processing to every 50th frame and then
runs DP on each snippet. We have developed a novel method to combine these results efficiently
and optimally to tell us in which snippets we should apply expensive processing, and where in
these snippets to process. This gives us an algorithm that, as overhead, requires application of
expensive processing to a constant fraction of the frames, but in return reduces computation time
from O(n5) to O(n), yielding an algorithm suitable for long video streams.

In section 1.1, we describe how we map a Hidden Markov Model to the problem of identi-
fying interesting events in a single video stream. In section 1.2, we formulate the problem more
concretely. In section 1.3, we describe a dynamic programming algorithm to solve the problem
optimally. In section 1.4, we discuss how we modify the algorithm in section 1.3 to meet our need.
In section 1.5, we describe and discuss the simple experiment we have performed so far.
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Figure 2: The HMM model

1.1 Hidden Markov Model and Probabilistic Inference

To start, we notice that whether or not a frame of video is interesting is closely related to whether
its neighboring frames are interesting. This suggests that we map the problem of identifying sig-
nificant sequences of video onto a Hidden Markov Model (HMM), which will enable us to do
probabilistic inference. In our model, each frame in the sequence is associated with a state vari-
able. The state is either interesting or not interesting. The observation emitted by the state variable
corresponds to the features extracted from the frame. For simplicity, one cheap feature and one
expensive feature are considered for now. The structure of this model is shown in figure 2. Vari-
ables starting with label “S” are state variables, and variables starting with “O” are observations,
where cheap features are labeled “C” and expensive features are labeled “E”. After learning the
parameters of this model, we can use a standard inference algorithm [4] to determine the state of
each frame based on their features. This sets up the problem of determining from which frames we
should extract expensive features. The following section gives a more concrete formulation of this
problem.

1.2 Problem Formulation

The following problem formulation uses the same formulation described in section 2 in [3]. First,
we want to model the fact that observations are informative. We consider a sequence of state vari-
ablesS= X1, ...,Xn in the HMM, and we define a class of local reward functionsRon the marginal
probability distributions of the variables. The local reward can be evaluated using probabilistic
inference techniques, and the total reward will then be the sum of all local rewards. To define a
local reward, we use a functional on the max-marginalPmax(Xj |O) for classification purpose,

Rj(Xj |O) = Rj(Pmax(Xj |O)) =∑
o

P(o)[Pmax(x∗j |o)−Pmax(x̄ j |o)],

whereO is the set of observed state variables,o is their value,x j is the value ofXJ x∗ = argmaxx j P
max(x j |o),

and x̄ = argmaxx j 6=x∗Pmax(x j |o). Second, we want to capture the constraint that observations are
expensive. This can mean that each observationXj has an associated positive penaltyCj that effec-
tively decreases the reward. Third, it is also possible to define a budgetB for selecting observations,
where each one is associated with an integer costβ j . Finally, our formulation of the optimization
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problem is
Maximize

J(O) = R(O)−C(O) =∑
j

Rj(Xj |O)−∑
i

Ci

Subject to

∑
i

βi < B

where j is the index over all the state variablesS, i is the index over observed state variablesO,
andB is the total amount of budget for the subsequence.

In addition, the property that our the state variables in our HMM form a Markov chain sim-
plifies this local reward. By conditional independence properties in a graphical model, the local
reward is simplyR(Xj |O) = R(Xj |Xj) in the case thatXj ∈ O. In the case thatXj is not inO, we
haveR(Xj |O) =R(Xj |O j), whereO j is the subset ofO containing the closest ancestor and descen-
dant ofXj in O. This local reward simplification plays a key role in the optimization algorithm in
section 1.3.

1.3 Conditional Plan

To get the set of observations for the problem, we need to specify a query policy. We consider
the following conditional policy: we sequentially observe the state variable in the HMM, pay the
penalty, and depending on the observed values, select the next query as long as our budget suffices.
Putting this policy into the optimization problem above, our goal is to find a plan with the highest
expected reward, where, for each possible sequence of observations, the budgetB is not exceeded.
We call such a observation plan the conditional plan [3]. To solve this problem, the objective
functionJ to be maximized is defined recursively:

The base case is defined on budget 0:

J(O = o;0) = ∑
Xj∈S

Rj(Xj |O = o)−C(O)

The recursive case is defined on budget limited to k:

J(O = o;k) = max{J(O = o;0), max
XjnotinO

{∑
y

P(Xj = y|O = o)J(O = o,Xj = y;k−β j)}}

The optimal plan has rewardJ( /0;B). [3] provides a dynamic programming algorithm on a sub-
chain of state variablesXa, ...,Xb. The base case is defined on budget 0:

Ja:b(xa,xb;0) =
b−1

∑
j=a+1

Rj(Xj |Xa = xa,Xb = xb),

where,Ja:b(xa,xb;0) means the optimal plan reward givenXa = xa andXb = xb with total budget
0. The recursive case definesJa:b(xa,xb;k), in which the total budget is k:

Ja:b(xa,xb;k) = max{Ja:b(xa,xb;0), max
a< j<b

{−Cj +∑
x j

P(Xj = x j |Xa = xa,Xb = xb){
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Rj(Xj |Xj = x j)+ max
0≤l≤k−β j

[Ja: j(xa,x j ; l)+Jj:b(x j ,xb;k− l −β j)]}}}

where it iterates through the possible split pointsj, such thata < j < b, and consider all possible
budget allocationl andk− l −β j for sub-chains to find maximum reward. Using the property that
reward is decomposable along chain, the optimal rewardJ( /0;B) is obtained byJ0:n+1( /0;B). The
state variablesX0 andXn+1 referred inJ0:n+1( /0;B) are two dummy variables withx0 = 1,xn+1 = 1,
andR0 = C0 = β0 = Rn+1 = Cn+1 = βn+1 = 0. After this, the observation plan can be obtained
by backtracking observation at each step of the resulting conditional plan. For details of this
algorithm, please refer to section 5 in [3].

1.4 Subsections and Convexity of Reward

1.4.1 Subsections

Using the above dynamic programming algorithm, an optimal conditional plan can be obtained.
However, one issue with this approach is that the running time of this algorithm isd3B2(1/6n3 +
O(n2)), wheren is the number of state variables in HMM andd is the maximum domain size of the
state variablesX1, ...,Xn (d = 2 in our case). This algorithm is therefore only suitable for situations
in whichn is a fairly small value, such asn = 50 or 100. In the case of video sequences,n may be
100,000 or greater, requiring an algorithm that is approximately linear inn.

To solve this problem, we consider the Markov properties of our HMM, which says that the
value of a state variable only depends on the values of its nearby state variables. So to predict the
state correctly, we may only need some expensive features in some nearby positions rather from
the whole sequence. Inspired by this, we divide the whole sequence into subsections, and run the
dynamic programming algorithm in each subsection to select expensive features in each subsection.
Given subsequences of constant length, this can be done inO(n) time. The key question is then to
allocate the available budget for processing between all of these subsequences.

1.4.2 Convexity of Reward

To run the dynamic programming algorithm, we may need a budget for each subsection. A simple
scheme is to uniformly allocate budget to each subsection using the total budget. However, some
sections may need more expensive features to eliminate false positives or false alarms. At the same
time, many other subsequences will require few, if any, additional expensive features because they
are unlikely to contain any events of interest.

We are therefore left with the following problem. For each subsequence, we can determine the
optimal feature acquisition plan for every possible budget, and the expected reward of each budget.
How do we allocate a single budget among all these subsequences to maximize our expected
reward? This problem has a simple solution for the special case in which the expected reward
from acquiring expensive features is monotonically increasing and convex with the number of
features acquired. That is, the reward must follow a law of diminishing returns in which increasing
the budget increases the reward more and more slowly. In this case, we can allocate our budget

6



Figure 3: A convex curve (left) and a non-convex curve (right)

optimally by assigning available resources incrementally to whichever subsequence will benefit
most from them. We stress that this incremental approach assigns the budget optimally; within
each subsequence the dynamic programming algorithm is used to then determine the optimal set
of observations for the assigned budget.

Empirically, we do find that the rewards of feature acquisition are convex for our problem. To
test this we obtained a sequence of 64,000 consecutive frames from a video viewing the bike track
around a lake. We divided the sequence into subsections, each of which contains fifty consecutive
frames. A slightly modified version of the dynamic programming algorithm (please refer to the
experiment section below) with budget from 0 to 9 was run on each subsection. Then we plot a
curve for each subsection describing the changes of optimal plan reward as budget changes, and
we call it reward-budget (RB) curve. We discover that the RB curve is always either strictly convex
(see the left side in Figure 3) or non-convex by a tiny amount (see the right side of Figure 3).

We can therefore use the following method to maximize the sum of reward increments for each
subsection. LetN be the maximum budget in the RB curves for each subsection. We can compute
the reward increments in each subsection for budget increments from zero to one, from one to
two, ..., and fromN−1 to N. We sort all these increments, and the budget for each subsection
is determined by the number of increments it has in the sorted top B increment list. We call this
method batch allocation of budget.

We can further improve on this, and avoid wasted computation with the following algorithm:

1. Initialize the budget of each subsection to be zero;

2. Compute the increment of reward for each subsection for increasing the budget from zero to
one;

3. Select the highest increment of reward, and add one more budget to its corresponding sub-
section Q;
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4. If the total budget for the whole sequence has been used up, terminate and use the current
subsection budget allocation as the final subsection budget allocation;

5. Compute the reward increment for subsection Q when its current budget is incremented by
one, and use it to replace the current reward increment for this subsection. Go back to step
3;

We call this algorithm dynamic allocation of budget. We give a proof of this algorithm below to
show that it gives an optimal budget allocation to maximize the increment of reward.

Problem: Given a total budget B, and let∆Ri
j , wherei, j ∈ Z+, be the increment of reward of

optimal plan for subsectionj when budget going fromi−1 to i. Then by the convexity assumption,
we know that∆Ri

j ≥ ∆Ri+1
j for every possible i and j. Letα j be the budget for subsectionj, and

R
α j
j be the total increment of reward for subsectionj with budgetα j . Then we have

R
α j
j =

{
0 if α j = 0
∑

α j
i=1∆Ri

j if α j > 0

show that the dynamic allocation of budget algorithm minimizes∑N
j R

α j
j , whereN is the total

number of subsections.
Proof: First, we observe that if∆Rp

n > ∆Rq
m, then∆Rp

n will be selected before∆Rq
m is selected.

To show this is true, suppose∆Rq
m is selected first, then it must be greater than or equal to every

reward increment for every subsection at that particular moment, including the one for subsectionn.
Let the reward increment be∆Rw

n . Since∆Rp
n > ∆Rq

m, then∆Rp
n > ∆Rw

n . By convexity assumption,
we know thatp < w. Then it must be that∆Rp

n is selected before∆Rw
n , and as a result before

∆Rq
m. But this creates a contradiction with our original assumption. This observation is denoted as

lemma 1.
Second, let the the optimal budget allocation be the set{β j}, whereβ j be the budget for

subsectionj. And let {l} be the set of indices for those subsections whose budget is zero. Then

by the definition ofR
β j
j , we have∑N

j R
β j
j = ∑l ∑βl

k=1∆Rk
l . Sorting∆Rk

l for all possiblel andk, we

can obtain∑N
j R

β j
j = ∑B

b=1∆Tb, where each∆Tb is corresponding to a∆Rk
l , and∆Tb ≥ ∆Tb−1 for

every possibleb. Also, let∆Pb be thebth reward increment selected in the algorithm, andγ j be the
budget for subsectionj computed by the algorithm. Then we can see that the total increment of
reward by the algorithm∑N

j R
γ j
j = ∑B

b=1∆Pb. The observation that∆Tb ≤ ∆Pb for every possibleb
is shown below. This observation is denoted as lemma 2.

Suppose that∆Tb > ∆Pb for someb. First, we know that∆Tb is equal to some reward increment
∆Rp

n and the same fact holds for∆Pb. Also, ∆Tc ≥ ∆Tb for each possiblec, such thatc < b, so
∆Tc > ∆Pb for eachc. Then by lemma 1, we know that∆Tc for each possiblec and∆Tb will be
selected before∆Pb in the algorithm, and totally, there areb of them. However, there are onlyb−1
increment of reward is selected before∆Pb is selected by the definition of∆Pb. So this creates a
contradiction.

Finally, by lemma 2, we know that∑N
j R

γ j
j = ∑B

b=1∆Pb ≥ ∑B
b=1∆Tb = ∑N

j R
β j
j . Also since{β j}

is the set of optimal budget allocation, we have∑N
j R

γ j
j ≤ ∑N

j R
β j
j . As a result,∑N

j R
γ j
j = ∑N

j R
β j
j .
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The proof is completed.

1.5 Experiments

Currently, only a simple experiment is performed on the 64000 frames mentioned in the previous
section. The real state of each frame is labeled by hand. The features we use are the size of the
largest connected foreground component from two background subtraction algorithms: Frame Dif-
ference (FD) [2] and Adaptive Gaussian Mixture Model (AGMM) [7]. After the background sub-
traction, some morphological operations are performed before computing the size. Since AGMM
is more accurate than FD in detecting the foreground region and more time-consuming, we con-
sider features from AGMM as expensive features and features from FD as cheap features. To do
inference on HMM, we extract the cheap feature at every frame and use the dynamic programming
method with subsection to determine on which frames we should sample expensive features. The
total 64000 frames are divided into subsections, each of which consists of 50 consecutive frames.
In [3], it mentions using dummy state variables with known value at the beginning and end of the
sequence before running the dynamic programming algorithm. However, we directly use the real
state of the first and last frame in each subsection to run the algorithm. The local rewardRj is com-
puted based on the marginal probability produced by cheap features, penaltyCj associated with a
expensive feature observation is always zero, and the observation cost for an expensive featureβ j

is always one. The budget for each subsection determined using batch allocation method, and the
RD curves for each subsection are computed up to budget 9. To make the learned parameters of the
HMM confirm with distribution in the testing data, we do testing and training based on the same
data. The inference error rates purely using expensive or cheap features are shown in Table 1. The
error rates for our sampling method and uniform sampling method under different total budgets for
the whole sequence are shown in Table 2.

Table 1: error rates purely using one kind of features
CheapFeatures Expensive Features

0.0066 0.0018

Table 2: error rates under different budgets for expensive features
Budget Our Sampling Uniform Sampling
1850 0.004 0.0059
910 0.004 0.0064
770 0.004 0.0065
570 0.0042 0.0065

From these tables, we can see that by using a few expensive feature samples, our sampling
algorithm can achieve better inference accuracy than uniform sampling. Also, compared with the
error rate of purely using expensive feature, the error rate is still a bit high using the budget we
have tried so far.
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1.6 Summary

The main purpose of this simple experiment has been to make our proposed work more concrete.
Even for a simple motion-detection task, we see there is a significant trade-off available between
accuracy and the amount of processing we perform. This trade-off becomes continuous if we pro-
cess all frames cheaply and some frames more accurately; by combining all the results using a
graphical model, expensive processing in some frames helps us to better analyze all the frames.
Given a fixed budget of accurate processing, making the most of this budget is a problem of label
acquisition. Performing effective label acquisition in a long video sequence is still an open prob-
lem, even when we use a simple HMM as our graphical model. However, we have made significant
progress on this problem. Our proposed work aims to extend this simple example to more complex
vision tasks and richer graphical models.

2 Extension to More Complex Models

The method we described in the previous section is applicable to HMMs, which is quite reasonable
for a single video sequence. However, when we have a network of cameras, we need to integrate
information from multiple sources and we need to make simultaneous decisions about whether
there was an object in any of the cameras and if so, in which ones. In such situations, we probably
need more complex graphical models, such as arbitrary Markov Random Fields. When the under-
lying graphical model structure is irregular, the algorithms we described in the previous section are
not applicable anymore. To address this issue, we have developed a new algorithm, called Reflect
and Correct (RAC) [1].

RAC is an iterative algorithm that first finds the locations where an incorrect decision is made
and then acquires more information in those locations. The key element of RAC is the question of
how to figure out if a frame is misclassified. We answer this question by using a local classifier
that makes independent decisions for each frame and by comparing its label estimates with the
estimates of the graphical model. We construct some features using the comparison of the estimates
and fit a classifier that can predict if a frame is misclassified.

Our preliminary experiments with synthetic datasets and publication datasets are very encour-
aging. RAC significantly outperformed (in terms of accuracy of the labeling) a viral marketing
based strategy [6] and previous approaches that are based on network structural properties such as
network clustering and node degree [5].
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